Approximate Star-Shaped Decomposition of Point Set Data

نویسنده

  • Jyh-Ming Lien
چکیده

Simplification or decomposition is a common strategy to handle large geometric models, which otherwise require excessive computation to process. Star-shaped decomposition partitions a model into a set of star-shaped components. A model is star shaped if and only if there exists at least one point which can see all the points of the model. Due to this interesting property, decomposing a model into star-shaped components can be used for computing camera locations to guard a given environment (the art-gallery problem), skeleton extraction, point data compression, as well as motion planning. In this paper, we propose a simple method to partition (or cluster) point set data (PSD) into “approximately star-shaped” components. Our method can be applied to both 2D and 3D PSD and can be naturally extended to higher dimensional spaces. Our method does not require or compute any connectivity information of the input points. The proposed method only requires the position and the outward normals of points. Our experimental results show that the size of the final decomposition is close to optimal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone

In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.

متن کامل

An efficient algorithm for decomposing a polygon into star-shaped polygons

In this paper we show how a theorem in plane geometry can be converted into an O(n log n) algorithm for decomposing a polygon into star-shaped subsets. The computational efficiency or this new decomposition contrasts with the heavy computational burden of existing methods. 1.0 Introduction The decomposition of a simple planar polygon into simpler components plays an important role in syntactic ...

متن کامل

A NORM INEQUALITY FOR CHEBYSHEV CENTRES

In this paper, we study the Chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. In particular, we prove that if T is a remotal subset of an inner product space H, and F is a star-shaped set at a relative Chebyshev centre c of T with respect to F, then llx - qT (x)1I2 2 Ilx-cll2 + Ilc-qT (c) 112 x E F, where qT : F + T is any choice functi...

متن کامل

Distinct edge geodetic decomposition in graphs

Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...

متن کامل

On Edge-Decomposition of Cubic Graphs into Copies of the Double-Star with Four Edges‎

‎A tree containing exactly two non-pendant vertices is called a double-star‎. ‎Let $k_1$ and $k_2$ be two positive integers‎. ‎The double-star with degree sequence $(k_1+1‎, ‎k_2+1‎, ‎1‎, ‎ldots‎, ‎1)$ is denoted by $S_{k_1‎, ‎k_2}$‎. ‎It is known that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching‎. ‎In this paper‎, ‎we study the $S_{1,2}$-decomposit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007